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Introduction 

Computer simulation of realistic urban environments started about twenty years ago. In the 
past two years, computer game technology wedded to low cost advances in graphics 
hardware has lead to the ability to display high resolution, real-time cities on consumer level 
computers. The Internet has given us the means to share these datasets on a worldwide 
basis and to embed new functionality and linkages to other types of external data. We need 
an organized means to build and share these “digital cities”. 

Purpose of this paper 

For years there has been much discussion and development focused around 3D terrain 
simulation stemming from military simulation needs. Since military doctrine precluded fighting 
wars in cities, little effort was expended in simulating urban environments. The conflict in 
Somalia is often cited as the turning point as military planners realized that we would continue 
to be faced with the prospect of having to fight in urban zones. This coupled with growing 
concerns about global terrorism have caused a refocusing of efforts to simulate our cities. 
 
It is the purpose of this paper to set out techniques for building high performance 3D urban 
environments as well as to suggest some standards to aid in data her. I should note that there 
is another arena of city building revolving around automated collection techniques using 
stereo pair photography, laser scanning, etc. While those techniques show promise, they do 
not yet yield sufficient fidelity for most of our uses. This paper will instead focus on high 
precision hand modeling techniques that have been the province of architects and computer 
game makers. 
 
Assumptions 
 
For the purposes of this paper, I will assume that the reader has a good understanding of the 
Internet and has a working knowledge ob 3D tools and concepts. While there are many fine 
3D authoring tools and real-time display formats, for the purposes of this paper, I will refer to 
authoring in 3D Studio Max (the leading 3D authoring tool), metadata storage in XML and 
VRML 97 (the ISO standard for real-time 3D on the Internet).  

 

 



Building Real Time City Models 

In creating an urban dataset, there are some clear objectives: 

• Create the highest sense of realism while, 
• Maintaining an acceptable frame rate that, 
• Uses a data structure that is comprehendible by others and that, 
• Can be added to by others and that is, 
• Compact in size for transmission via the Internet. 

When we first began building city models for Internet use, we limited the files to 2,500 
polygons. Today with improvements in hardware, software and Internet transmission speeds, 
we regularly use models over 100,000 polygons.  Each year we find that rules for model 
building change with rapid advances in technology. Each rendering platform also has 
strengths and weaknesses that can be exploited with careful model building and data 
structuring. In spite of the difficulties in addressing a “moving target” topic I will offer some 
useful generalities for real-time model building. 

Pre-Planning 

Each model building project should begin with a design document that states the project 
objectives, design criteria and technical constraints. Some of the questions that should be 
addressed are: 

• What is the polygon budget? 
• What is the design platform? 
• What is the texture budget? 
• Who are the target users? 
• What are the file size constraints? 
• What is the design screen resolution? 
• What is the rendering platform? 

Here is an example of a typical polygon budget: 

1. Ground Plane 10,000 polygons 
2. Buildings 40,000 polygons (40 buildings @ 1,000 polygons / bldg. avg.) 
3. Street Furniture 6,000 polygons (100 objects @ 60 polygons / object) 
4. Landscaping 4,000 polygons (1,000 trees @ 4 polygons / tree) 

This totals 60,000 polygons. Often polygon budgets get more detailed than the example 
given. 



Planning For Online Use 

Deploying an urban dataset over the Internet requires careful consideration of user bandwidth 
constraints and server responsiveness. It is important to understand what are practical wait 
times for a user and how this translates into workable file sizes and the quantity of textures to 
be used. In the days that we designed for users on 28.8 dial-up connections we had an 
internal rule that dictated that no geometry file was to exceed 50k, no texture file could 
exceed 11k and there was to be a maximum of 20 textures used. These standards seem 
antiquated now except that as we are addressing technical limitations for hand held 
computers, we find ourselves looking back to the older limits. In designing for T1 / DSL users 
we have raised our limits to about 300k for geometry files, 60k for texture files with as many 
as 100 textures. 

Compression of geometry files is critical to maintaining small file sizes. VRML supports gzip 
compression with no difference in performance. Compression rates vary, but we typically see 
5:1 compression rates. It also helps to reduce file sizes with the help of an optimization tool 
such as Chisel. 

The overall number of textures used is significant relative to the overall texture memory used 
but also for the number of “hits” that the server must address. It is helpful to try to reduce the 
overall number of textures in a project but also to collage textures together into larger textures 
to reduce the load on the server and to reduce the memory footprint on the client computer. 
(See the section on texture collaging below.) 

Low Polygon Geometry 

Good Polygons 

Cracks, Shared Vertex’s and Decimal Places 

“T” Vertex’s 

Quads and N-Gons 

Some older 3D file formats define a polygon as having only three vertexes. Most modern 
formats support polygons with four or more vertexes. It is more efficient to render a surface 
containing 10 four sided polygons rather than 20 three sided polygons. The file size is also 
slightly smaller. Where possible, quads and n-gons (polygons with five or more vertexes) 
should be used. 

Texturing to Simulate Detail 

In the earliest days of real-time simulation, polygon budgets were extremely low forcing 
modelers to rely on texturing to simulate detail that could not be built in 3D. Texture 
resolutions were also limited due to download and display constraints. The tendency was to



use a single texture map for each side of a building. The limitations of this approach became 
apparent as the viewer approached the building and saw enormous pixels. 

Today, using modern engines, we are seeing polygon budgets for individual buildings 
between 500 and 2,000 polygons and textures as large as 2048 x 2048. This has allowed us 
to include medium sized building details and to begin breaking down facades into repitious 
panels. For instance, a building with a repeated window panel may be comprised of four 
texture variants randomly sprinkled over the buildings surface to achieve a more natural 
appearance.. Sice individual textures cover a relatively small area, pixilation problems are 
minimized. We are even occasionally adding individual buildings to scenes with polygon 
counts in the 50,000 to 300,000 range. 

Pre-Lit Texturing 

Mip-Mapping 

Mip-mapping is a technique used to replace texture maps with progressively lower resolution 
textures as the view moves away from the textured object. This reduces the overall memory 
footprint of the scene and consequently increases the frame rate. Modern graphics cards 
perform this function automatically if the original texture adheres to mip-map texture 
dimensions. Mip-mapable dimensions are based on the power of 2 such as 16, 32, 64, 128, 
256, 512, etc. With most rendering engines, textures can be rectangular. 

It is often a difficult conceptual leap to take a pristine building façade texture map and modify 
the overall aspect ratio to conform to mip-map dimensions. (i.e. A 640 x 480 texture is re-
sized to 512 x 512.) It helps to remember that the rendering engine is already distorting 
textures to appear in perspective. The additional distortion required to resize a texture to mip-
map dimensions yields no visible image degradation and significant performance 
improvement. 

Collaging 

Memory footprint … download time 

Texture Compression 

Color by Vertex 

Minimizing Hidden Geometry 

Using Normals to Advantage 

By definition, polygons are opaque on one side and transparent on the other. Most of our data 
represents a shell so it is OK to be transparent on the side that will never be viewed. 
Occasionally, we may wish to have a polygon be opaque on both sides. This can me



achieved by using the “solid FALSE” tag within the VRML IndexedFaceSet description or by 
using a “2-sided material” if authoring in Studio Max. Making a polygon opaque on both sides 
doubles the rendering load for that object, so please use this feature sparingly. 

Imposters 

Imposters are flat, texture mapped polygons that are meant to represent a more detailed 
object. There are several types of imposters; scrims, billboards and x-objects. A scrim is a 
background diorama that represents objects in the distance. Scrims may represent foliage, a 
city skyline or a store interior. Billboards are flat, textured polygons that rotate to always face 
the viewer. This is useful for trees and statues. X-objects are usually two or three intersecting 
planes used to represent trees (“x-trees”). A few systems also support dynamically generated 
imposters to replace distant geometry. This is not yet a mainstream approach. 

Levels of Detail (LOD’s) 

In the earliest days of simulation, display platforms were highly constrained by the overall 
number of polygons within the view frustum. LOD systems were invented to counteract this 
limitation by using multiple models of the same object, built at different resolutions. With 
LOD’s, progressively more detailed models are displayed as the viewer gets closer to an 
object. This has the benefit of reducing the overall scene polygon count. It also has the 
negative aspect of increasing the overall file size and increasing the authoring time. In recent 
times, with more robust display platforms, we have actually noticed performance reductions in 
models using LOD’s. I encourage the author to become familiar with the strengths and 
weaknesses of the rendering engine to be used. 

A new generation of LOD type geometry systems has appeared called multi-resolution 
geometries. Multi-resolution geometries work in two ways. Multi-resolution geometries can 
automatically reduce the resolution of distant objects to maintain a consistent frame rate or 
polygon count within the scene. Well done systems are able to maintain proper texturing and 
object profiles without the appearance of seams, swimming or popping as is inherent in 
traditional LOD schemes. The other way that multi-resolution geometries are used is with 
streaming systems online.. In this scheme, a low-resolution proxy is initially loaded in the 
scene. Progressively higher resolution is displayed over time as additional detail is 
downloaded. VRML viewer developers are just beginning to address the use of these 
technologies. Eventually, they may replace traditional LOD schemes altogether. 

Elevation Grids 

Primitives 

Many programmers feel that objects define by primitive shapes, such as cubes, spheres, 
cones, etc., run faster than polygonal shapes. While using primitives saves somewhat in file 
size, our bench tests show primitives to run significantly more slowly than their polygonal



counterparts. 

Extrusions 

Indexed Line Sets 

Collision 

Data Structure 

Scene Management Techniques 

Data Optimization 

Publishing the Data 

Summary 

Future Topics to Consider: 

1. Data Validation. 
2. Date tagging and time lapse simulation. 
3. Automated collection techniques. 
4. Needed areas of future technology development. 
5.  

Appendix A 

A Proposed Resolution Classification System 

Several years ago, the military developed a classification system for the resolution of terrain 
data called DTED (digital terrain elevation data). To date, no standards have evolved to 
classify urban data. There are several pertinent aspects that characterize the resolution of an 
urban dataset, such as texture resolution, building detail and overall scene detail. I would like 
to propose the following classification system based on DCD (digital city data): 

Item DCD0 DCD1 DCD2 DCD3 DCD4 
Texture Resolution 1m. 50cm. 25cm. 10cm. 5cm. 
Building Detail 10m. 5m. 1m. 50cm. 10cm. 
Street Detail Flat Curbs Curbs Curbs Curbs & Cuts

Landscaping Detail      
  Trees Billboard X-Trees X-Trees X-Trees w/Trunks Polygonal 
  Shrubs   Scrim X-Bush xx 



  Shrubs   Scrim X-Bush xx 
  Topo Features   Slight xx xx 

  Pathways     Major All All w/ Curbs 

  Fountains          

  Statues   Billboard Billbd. w/Base Polygonal Polygonal 

  Walls & Steps   Basic W/ Ramps W/ Ramps W/ Steps 

Street Furniture Detail           

  Traffic Signs   Yes Yes Yes 
  Traffic Signals   Yes Yes Yes Yes 
  Street Signs   Generic Readable Readable Readable 

  Waste Receptacles       Yes Yes 
  Benches       Yes Yes 
  News Stands     Yes Yes Yes 
  News Boxes       Yes Yes 
  Street Lights  Yes Yes Yes Yes 

Texture resolution is stated in meters describing the approximate size of a pixel displayed on 
a building façade.  

Building detail refers to the size or granularity of details modeled. As an example, DCD0 
buildings would be basic boxes; DCD1 buildings would include setbacks and stepping; DCD2 
buildings would add columns and mechanical penthouses; DCD3 buildings would have 
cornices and bay windows and DCD4 buildings would have window mullions and recessed 
doorways. 

Appendix B 

Planet 9 Studios Naming & File Structure System 

Object Naming - Most geography based display systems have been built on cells defined by 
latitude and longitude. Our business needs over the years have been focused on cities and 
their buildings. It would have been possible for us to use a lat/lon convention for the naming 
and structuring of our cities but it would have been quite un-intuitive and difficult to implement. 
Instead, we choose to develop a system based on place names and property descriptions. 
Here is an example: 

• California (state) 
•   Bay Area (region) 
•      San Francisco (city) 
•         Financial District (neighborhood) 
• Block # (city designation)



•              Lot # (parcel) 

As with most structured systems, there is a need to handle exceptions. For instance, in San 
Francisco, the waterfront buildings located on piers do not have lot and block numbers. In this 
case, we have simply named objects by their well know names such as “Pier 45”. 

Texture naming – Our texture naming is directly derived from the Object Naming scheme 
above. A typical texture name would look like this: 123456w.jpg where 1234 = block, 56, = lot 
and “w” is a modifier, in this case indicating a west facing elevation. Here are some more of 
our standard modifiers: 

• n, s, e, w, = north, south, east and west facing elevations. 
• na, nb = this would indicate multiple north facing elevations. 
• x = transparency map 
• b = bump map 
• e = environment map 
• s = shininess map 
• i = illumination map 

 

Increasingly, real-time engines are supporting multi-texturing. We may find new mapping 
types over time. There are also novel uses of existing texture formats such as using the alpha 
channel for illumination information rather than for transparency. It is also common to collage 
texture together to improve performance. In these cases we often combine the textures for an 
entire block into one texture. In this case we use the block number alone as the texture name.

Case Sensitivity -  

Data Hierarchy -  
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